首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9939篇
  免费   824篇
  国内免费   151篇
  2023年   187篇
  2022年   207篇
  2021年   431篇
  2020年   391篇
  2019年   392篇
  2018年   449篇
  2017年   284篇
  2016年   317篇
  2015年   406篇
  2014年   681篇
  2013年   767篇
  2012年   410篇
  2011年   615篇
  2010年   454篇
  2009年   596篇
  2008年   592篇
  2007年   520篇
  2006年   486篇
  2005年   438篇
  2004年   316篇
  2003年   274篇
  2002年   240篇
  2001年   136篇
  2000年   105篇
  1999年   113篇
  1998年   114篇
  1997年   76篇
  1996年   72篇
  1995年   76篇
  1994年   71篇
  1993年   70篇
  1992年   51篇
  1991年   39篇
  1990年   35篇
  1989年   33篇
  1988年   20篇
  1987年   19篇
  1986年   17篇
  1985年   43篇
  1984年   69篇
  1983年   36篇
  1982年   66篇
  1981年   47篇
  1980年   32篇
  1979年   34篇
  1978年   20篇
  1977年   14篇
  1976年   11篇
  1974年   12篇
  1973年   10篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
2.
This study was undertaken to assess magnetic resonance imaging (MRI)-based radiocarpal surface contact models of functional loading in a clinical MRI scanner for future in vivo studies, by comparison with experimental measures from three cadaver forearm specimens. Experimental data were acquired using a Tekscan sensor during simulated light grasp. Magnetic resonance (MR) images were used to obtain model geometry and kinematics (image registration). Peak contact pressures (PPs) and average contact pressures (APs), contact forces and contact areas were determined in the radiolunate and radioscaphoid joints. Contact area was also measured directly from MR images acquired with load and compared with model data. Based on the validation criteria (within 25% of experimental data), out of the six articulations (three specimens with two articulations each), two met the criterion for AP (0%, 14%); one for peak pressure (20%); one for contact force (5%); four for contact area with respect to experiment (8%, 13%, 19% and 23%), and three contact areas met the criterion with respect to direct measurements (14%, 21% and 21%). Absolute differences between model and experimental PPs were reasonably low (within 2.5 MPa). Overall, the results indicate that MRI-based models generated from 3T clinical MR scanner appear sufficient to obtain clinically relevant data.  相似文献   
3.
Microscopic structural alterations of liver tissue induced by freeze-thaw cycles give rise to palpable property changes. However, the underlying damage to tissue architecture is difficult to quantify histologically, and published data on macroscopic changes in biophysical properties are sparse.To better understand the influence of hepatic cells and stroma on global biophysical parameters, we studied rat liver specimens freshly taken (within 30 min after death) and treated by freeze-thaw cycles overnight at either −20 °C or –80 °C using diffusion-weighted imaging (DWI) and multifrequency magnetic resonance elastography (MRE) performed at 0.5 T in a tabletop MRE scanner. Tissue structure was analyzed histologically and rheologic data were analyzed using fractional order derivatives conceptualized by a called spring-pot component that interpolates between pure elastic and viscous responses.Overnight freezing and thawing induced membrane disruptions and cell detachment in the space of Disse, resulting in a markedly lower shear modulus μ and apparent diffusion coefficient (ADC) (μ[−20 °C] = 1.23 ± 0.73 kPa, μ[−80 °C] = 0.66 ± 0.75 kPa; ADC[–20 °C] = 0.649 ± 0.028 μm2/s, ADC[−80 °C] = 0.626 ± 0.025 μm2/s) compared to normal tissue (μ = 9.92 ± 3.30 kPa, ADC = 0.770 ± 0.023 μm2/s, all p < 0.001). Furthermore, we analyzed the springpot-powerlaw coefficient and observed a reduction in −20 °C specimens (0.22 ± 0.14) compared to native tissue (0.40 ± 0.10, p = 0.033) and −80 °C specimens (0.54 ± 0.22, p = 0.002), that correlated with histological observations of sinusoidal dilation and collagen distortion within the space of Disse. Overall, the results suggest that shear modulus and water diffusion in liver tissue markedly decrease due to cell membrane degradation and cell detachment while viscosity-related properties appear to be more sensitive to distorted stromal and microvascular architecture.  相似文献   
4.
α-Synuclein (αSyn) aggregation is involved in the pathogenesis of Parkinson disease (PD). Recently, substitution of histidine 50 in αSyn with a glutamine, H50Q, was identified as a new familial PD mutant. Here, nuclear magnetic resonance (NMR) studies revealed that the H50Q substitution causes an increase of the flexibility of the C-terminal region. This finding provides direct evidence that this PD-causing mutant can mediate long range effects on the sampling of αSyn conformations. In vitro aggregation assays showed that substitution of His-50 with Gln, Asp, or Ala promotes αSyn aggregation, whereas substitution with the positively charged Arg suppresses αSyn aggregation. Histidine carries a partial positive charge at neutral pH, and so our result suggests that positively charged His-50 plays a role in protecting αSyn from aggregation under physiological conditions.  相似文献   
5.
The 231-residue capsid (CA) protein of human immunodeficiency virus type 1 (HIV-1) spontaneously self-assembles into tubes with a hexagonal lattice that is believed to mimic the surface lattice of conical capsid cores within intact virions. We report the results of solid-state nuclear magnetic resonance (NMR) measurements on HIV-1 CA tubes that provide new information regarding changes in molecular structure that accompany CA self-assembly, local dynamics within CA tubes, and possible mechanisms for the generation of lattice curvature. This information is contained in site-specific assignments of signals in two- and three-dimensional solid-state NMR spectra, conformation-dependent 15N and 13C NMR chemical shifts, detection of highly dynamic residues under solution NMR conditions, measurements of local variations in transverse spin relaxation rates of amide 1H nuclei, and quantitative measurements of site-specific 15N–15N dipole–dipole couplings. Our data show that most of the CA sequence is conformationally ordered and relatively rigid in tubular assemblies and that structures of the N-terminal domain (NTD) and the C-terminal domain (CTD) observed in solution are largely retained. However, specific segments, including the N-terminal β-hairpin, the cyclophilin A binding loop, the inter-domain linker, segments involved in intermolecular NTD–CTD interactions, and the C-terminal tail, have substantial static or dynamical disorder in tubular assemblies. Other segments, including the 310-helical segment in CTD, undergo clear conformational changes. Structural variations associated with curvature of the CA lattice appear to be localized in the inter-domain linker and intermolecular NTD–CTD interface, while structural variations within NTD hexamers, around local 3-fold symmetry axes, and in CTD–CTD dimerization interfaces are less significant.  相似文献   
6.
Recombinant monoclonal antibodies (mAbs) have become an important category of biological therapeutics. mAbs share the same structures and biological functions as endogenous IgG molecules. One function is complement-dependent cytotoxicity (CDC) initiation by binding of C1q. Traditionally, ELISA methods have been utilized to measure C1q binding. A new robust capture method was established in this study to measure the binding affinity of C1q to antibodies by surface plasmon resonance (SPR). The utility of this method was demonstrated by determination of the difference in IgG subclass specificity of C1q binding.  相似文献   
7.
The cellular energy and biomass demands of cancer drive a complex dynamic between uptake of extracellular FAs and their de novo synthesis. Given that oxidation of de novo synthesized FAs for energy would result in net-energy loss, there is an implication that FAs from these two sources must have distinct metabolic fates; however, hitherto, all FAs have been considered part of a common pool. To probe potential metabolic partitioning of cellular FAs, cancer cells were supplemented with stable isotope-labeled FAs. Structural analysis of the resulting glycerophospholipids revealed that labeled FAs from uptake were largely incorporated to canonical (sn-) positions on the glycerol backbone. Surprisingly, labeled FA uptake also disrupted canonical isomer patterns of the unlabeled lipidome and induced repartitioning of n-3 and n-6 PUFAs into glycerophospholipid classes. These structural changes support the existence of differences in the metabolic fates of FAs derived from uptake or de novo sources and demonstrate unique signaling and remodeling behaviors usually hidden from conventional lipidomics.  相似文献   
8.
Metal-free click chemistry has become an important tool for pretargeted approaches in the molecular imaging field. The application of bioorthogonal click chemistry between a pretargeted trans-cyclooctene (TCO) derivatized monoclonal antibody (mAb) and a 99mTc-modified 1,2,4,5-tetrazine for tumor imaging was examined in vitro and in vivo. The HYNIC tetrazine compound was synthesized and structurally characterized, confirming its identity. Radiolabeling studies demonstrated that the HYNIC tetrazine was labeled with 99mTc at an efficiency of >95% and was radiochemically stable. 99mTc–HYNIC tetrazine reacted with the TCO–CC49 mAb in vitro demonstrating its selective reactivity. In vivo biodistribution studies revealed non-specific liver and GI uptake due to the hydrophobic property of the compound, however pretargeted SPECT imaging studies demonstrated tumor visualization confirming the success of the cycloaddition reaction in vivo. These results demonstrated the potential of 99mTc–HYNIC–tetrazine for tumor imaging with pretargeted mAbs.  相似文献   
9.
Martin Peper   《Journal of Physiology》2006,99(4-6):293-307
This article reviews the psychophysiological and brain imaging literature on emotional brain function from a methodological point of view. The difficulties in defining, operationalising and measuring emotional activation and, in particular, aversive learning will be considered. Emotion is a response of the organism during an episode of major significance and involves physiological activation, motivational, perceptual, evaluative and learning processes, motor expression, action tendencies and monitoring/subjective feelings. Despite the advances in assessing the physiological correlates of emotional perception and learning processes, a critical appraisal shows that functional neuroimaging approaches encounter methodological difficulties regarding measurement precision (e.g., response scaling and reproducibility) and validity (e.g., response specificity, generalisation to other paradigms, subjects or settings). Since emotional processes are not only the result of localised but also of widely distributed activation, a more representative model of assessment is needed that systematically relates the hierarchy of high- and low-level emotion constructs with the corresponding patterns of activity and functional connectivity of the brain.  相似文献   
10.
Surface properties of Sendai virus envelope membrane have been measured, using both biological and biophysical techniques. Both normal and trypsin-treated virus were studied. SDS gel electrophoresis showed cleavage of the F protein exclusively by trypsin. The major activity change was observed in the hemolysing activity which is an expression of F protein. Hemolysis was reduced to less than 10% of its value for intact virus. 31P nuclear magnetic resonance studies of the envelope surface of the native virus showed a highly restricted phospholipid headgroup environment. Interestingly, this restriction was relieved by treatment with trypsin. Thus these data suggest a role of the F protein of Sendai virus in tightly organizing the surface of the viral envelope membrane.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号